Study of Hadron Correlations and Interactions Using a Dynamical Model

Sophia U

Kenshi Kuroki (Sophia University) k-kuroki-e23@eagle.sophia.ac.jp

References

 KK, Ph.D. Thesis, Sophia University (2024) https://digital-archives.sophia.ac.jp/repository/view/repository/20243600403
 KK, T. Hirano, EPJ Web Conf. 316, 03009 (2025)

Contents

Introduction

- Basics of Femtoscopy
- **p** ϕ Femtoscopy

Contents

Introduction

Basics of Femtoscopy
 p\$\phi\$ Femtoscopy

Various Hadrons

S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

$\begin{array}{c} \pi^{\pm} \\ \pi^{0} \\ \pi^{0} \\ \eta \\ \phi_{1}(500) \\ \phi(770) \\ \omega(782) \\ \omega(782) \\ \phi_{1}(782) \\ \phi_{1}(170) \\ \phi_{1}(123) \\ \phi_{1}(123) \\ \phi_{1}(1270) \\ \phi_{1}(1270) \\ \phi_{1}(1260) \\ \phi_{1}(1270) \\ \phi_{1}(1280) \\ \phi_{2}(1220) \\ \phi_{1}(1295) \\ \pi_{1}(1300) \\ \phi_{2}(1200) \\ \phi_{1}(1405) \\ \phi_{1}(1405) \\ \phi_{1}(1450) \\ \phi_{1}(1450) \\ \phi_{1}(1450) \\ \phi_{1}(1500) \\ f_{1}(1500) \\ f_{1}(1500) \\ f_{1}(1595) \\ \phi_{1}(1595) \\ \phi_{1}(1595) \\ \phi_{1}(1595) \\ \phi_{1}(1595) \\ \phi_{1}(1595) \end{array}$	$\begin{array}{c} \text{L(GHT UNR}\\ \text{L(GFT ONR}\\ \text{S}=c=\\ p^{c}(p^{c}c)^{pc}\\ 1^{-}(0^{-})\\ 1^{-}(0^{-})\\ 1^{-}(0^{-})\\ 1^{-}(0^{-})\\ 1^{-}(0^{-})\\ 1^{-}(0^{-})\\ 1^{-}(0^{-})\\ 1^{-}(1^{-})\\ 1^{-}(0^{-})\\ 1^{-}(1^{-})\\ 1^{-}(0^{-})\\ 1^{-}(1^$	$ \begin{array}{c} NFLAVORED \\ C = \beta = 0 \\ \hline \\ & \bullet \rho(1700) \\ & \bullet a_2(1700) \\ & \bullet a_2(1700) \\ & \bullet a_2(1700) \\ & \bullet a_1(1700) \\ & \bullet a_1(1700) \\ & \bullet a_1(1700) \\ & \bullet a_1(1800) \\ & f_0(1770) \\ & \bullet a_1(1800) \\ & f_0(1700) \\ & \bullet a_1(1800) \\ & \bullet a_2(1800) \\ & \bullet a_2(1800)$	$\frac{f^{c}(J^{pc})}{1+(1)}$ $\frac{1+(1)}{1-(2++)}$ $\frac{1-(2++)}{2-(1)}$ $\frac{1-(2++)}{2-(1)}$ $\frac{1-(2++)}{2-(1)}$ $\frac{1-(2++)}{2-(2++)}$ $\frac{1-(2++)}{2-(2++)}$ $\frac{1-(2++)}{2-(2++)}$ $\frac{1-(2++)}{2-(2++)}$ $\frac{1-(2++)}{2-(2++)}$ $\frac{1-(2++)}{2-(2++)}$ $\frac{1-(2++)}{2-(2++)}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	CHARMED, STRANGE continued $(/P)$ $D_{a0}(2590)^+$ $0(0^-)$ $D_{a1}^+(2700)^+$ $0(1^-)$ $D_{a1}^+(2700)^+$ $0(1^-)$ $D_{a1}^+(2800)^+$ $0(1^-)$ $D_{a1}^+(2800)^+$ $0(2^-)$ BOTTOM $(B = \pm 1)$ B^{\pm} $1/2(0^-)$ B^{\pm} B^{\pm} $B^{\pm}(20^-)$ $B^{\pm}/B^{0}/B^{0}/b$ baryon ADMIXTURE V_{ab} and V_{ab} CKM Ma trix Elements $B^{\pm}(5721)$ $1/2(1^+)$ $B_{a}^+(5722)$ $7(7^2)$ BALST $1/2(2^+)$	$\frac{c^{2} \text{ continued } f^{2}(f^{2}C)}{f^{2}(f^{2}C)} = \frac{\psi(4230)}{\psi(4230)} = \frac{C^{-}(1^{-})}{\sqrt{\chi_{C1}(4240)}} = \frac{\psi(4250)}{\psi(4450)} = \frac{\psi(7^{+})}{\psi(4450)} = \frac{\psi(7^{+})}{\sqrt{\chi_{C1}(4500)}} = \frac{\psi(7^{+})}{\psi(4450)} = \frac{\psi(7^{+})}{\chi_{C1}(4685)} = \frac{\psi(7^{+})}{\psi(7^{+})} = \frac{b\overline{b}}{\sqrt{\chi_{C1}(4685)}} = \frac{b\overline{b}}{\psi(1^{+}+)} = \frac{b\overline{b}}{\chi_{C1}(4685)} = \frac{b\overline{b}}{\psi(1^{+}+)} = \frac{b\overline{b}}{\chi_{C1}(4685)} = \frac{b\overline{b}}{\psi(1^{+}+)} = \frac{b\overline{b}}{\chi_{C1}(4700)} = \frac{b\overline{b}}{\psi(1^{+}+)} = \frac{b\overline{b}}{\chi_{C1}(1^{2})} = $	have been Mesons Barvons	р n N(1440) N(1520) N(1535) N(1650) N(1675) N(1660) N(1700) N(1700) N(1700) N(1700) N(1720) N(1860) N(1875) N(1880) N(1895) N(1900)	1/2 ⁺ ***** 1/2 ⁺ **** 3/2 ⁻ **** 1/2 ⁻ **** 5/2 ⁺ **** 3/2 ⁻ **** 1/2 ⁺ **** 3/2 ⁺ **** 3/2 ⁺ **** 3/2 ⁻ **** 1/2 ⁺ **** 3/2 ⁺ ****	Δ(1232) Δ(1600) Δ(1620) Δ(1700) Δ(1900) Δ(1900) Δ(1900) Δ(1910) Δ(1920) Δ(1940) Δ(1940) Δ(1950) Δ(2000) Δ(2200) Δ(2200) Δ(2200) Δ(2300)	3/2 ⁺ ***** 3/2 ⁺ ***** 3/2 ⁻ **** 1/2 ⁻ *** 5/2 ⁻ **** 3/2 ⁻ *** 3/2 ⁻ *** 5/2 ⁻ *** 5/2 ⁻ *** 5/2 ⁻ *** 5/2 ⁺ *** 5/2 ⁻ *** 5/2 ⁻ *** 5/2 ⁺ *** 5/2 ⁻ *** 5/2 ⁺ *** 5/2 ⁻ *** 5/2 ⁺ *** 5/2 ⁻ ***	$\begin{array}{c} \Sigma^{+} \\ \Sigma^{0} \\ \Sigma^{-} \\ \Sigma(1385) \\ \Sigma(1580) \\ \Sigma(1580) \\ \Sigma(1620) \\ \Sigma(1620) \\ \Sigma(1775) \\ \Sigma(1775) \\ \Sigma(1775) \\ \Sigma(1775) \\ \Sigma(1775) \\ \Sigma(1900) \\ \Sigma(1900) \\ \Sigma(1910) \\ \Sigma(1910) \\ \Sigma(19140) \end{array}$	1/2 ⁺ ***** 1/2 ⁺ ***** 3/2 ⁻ * 1/2 ⁻ * 1/2 ⁻ * 1/2 ⁻ * 3/2 ⁻ * 3/2 ⁻ * 3/2 ⁻ * 3/2 ⁺ * 1/2 ⁻ * 3/2 ⁺ * 3/2 ⁻ * 3/2 ⁻ * 3/2 ⁺ *	$\begin{array}{c} \Lambda_c^+ & 1/2^+ & \ast \\ \Lambda_c(2595)^+ & 1/2^- & \ast \\ \Lambda_c(2625)^+ & 3/2^- & \ast \\ \Lambda_c(2860)^+ & 3/2^+ & \ast \\ \Lambda_c(2800)^+ & 5/2^+ & \ast \\ \Lambda_c(2910)^+ & & \ast \\ \Lambda_c(2940)^+ & 3/2^- & \ast \\ \Sigma_c(2455) & 1/2^+ & \ast \\ \Sigma_c(2450) & 3/2^+ & \ast \\ \Sigma_c(2520) & 3/2^+ & \ast \\ \Sigma_c(2600) & & & \ast \\ \Xi_c^+ & 1/2^+ & \ast \\ \Xi_c^0 & 1/2^+ & \Xi_c^0 & 1/2^+ & \ast \\ \Xi_c^0 & 1/2^+ & \Xi_c^0 & 1/2^+ & \Xi_c^0 & 1/2^+ & \Xi_c^0 & \Xi$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1/2^+ & *** \\ 0 & 1/2^- & *** \\ 0 & 3/2^- & *** \\ 0 & 3/2^+ & *** \\ 0 & 3/2^+ & *** \\ 1/2^+ & *** \\ 1/2^+ & *** \\ 1/2^+ & *** \\ 1/2^+ & *** \\ 1/2^+ & *** \\ 1/2^+ & *** \\ 1/2^+ & *** \\ 0 & 3/2^- & *** \\ 0 & ***$
• $\pi_1(1600)$ • $a_1(1640)$ $f_2(1640)$ • $\eta_2(1645)$ • $\omega(1650)$ • $\omega_3(1670)$	$1^{-}(1^{-}+)$ $1^{-}(1^{+}+)$ $0^{+}(2^{+}+)$ $0^{+}(2^{-}+)$ $0^{-}(1^{-}-)$ $0^{-}(3^{-}-)$	Exotic hadrons))+ *))+ * ()+ * (9) ⁰ *
- π ₂ (1670) • φ(1680) • ρ ₃ (1690)	1-(2-+) 0-(1) 1+(3)	$\frac{X(2370)}{f_0(2470)}$	a+(e++) 0+(0++) 3.(3.)	$\begin{array}{lll} D_{12}^{*}(2600)^{5} & 1/2(1\\ D_{12}^{*}(2640)^{\pm} & 1/2(2\\ D_{2}(2740)^{5} & 1/2(2\\ D_{3}^{*}(2750) & 1/2(3\\ D_{12}^{*}(2750)^{5} & 1/2(1\\ D_{13}^{*}(3000)^{6} & 1/2(2\\ CHARMED, STRANG\\ (\zeta = \pm 1, 5 = \pm 1\\ 0, 5 = \pm 0, (1^{-})\\ D_{21}^{\pm} & 0(0^{-})\\ D_{21}^{\pm} & 0(0^{+})\\ D_{31}(2256)^{\pm} & 0(1^{+})\\ D_{31}(2560)^{\pm} & 0(1^{+})\\ D_{32}^{*}(2573) & 0(2^{+})\\ \end{array}$	$\begin{array}{c} \lambda_{2(11^{P})} & 0 & (1 & -) \\ \theta_{n}(1P) & 0 & -(1 & -) \\ \lambda_{22}(1P) & 0^{+}(2 & +) \\ \eta_{7}(2S) & 0^{+}(0 & -+) \\ \psi_{1}(3S23) & 0^{-}(2 & -) \\ \psi_{3}(3823) & 0^{+}(0 & +) \\ \lambda_{20}(3800) & 0^{+}(0 & +) \\ \lambda_{21}(3910) & 0^{+}(1 & +) \\ \lambda_{22}(3930) & 0^{+}(2 & +) \\ \lambda_{21}(3940) & 7^{2}(7^{2}) \\ \psi_{4}(400) & 0^{-}(1 & -) \\ \psi_{4}(4160) & 7^{2}(7^{2}) \end{array}$	$\begin{array}{c} r_{cc}(4050) & 1 & (i & f) \\ r_{cc}(4055)^{+} & 1^{+}(?^{2}-) \\ r_{cc}(4005)^{+} & 1^{+}(1^{+}-) \\ r_{cc}(4200)^{+} & 1^{+}(1^{+}-) \\ r_{cc}(4200)^{+} & 1^{+}(0^{-}-) \\ r_{cc}(4200)^{+} & 1^{+}(1^{+}-) \\ r_{cc}(4250)^{+} & 1^{+}(?^{2}) \\ r_{ccc}(6900)^{0} & 1^{+}(?^{2}+) \\ r_{ccc}(6900)^{0} & 1^{+}(?^{1}+) \\ r_{ccc}(6900)^{0} & 1^{+}(1^{+}-) \\ r_{bbl}(10650)^{+} 1^{+}(1^{+}-) \\ Further States \\ \end{array}$				A(1890) A(2000) A(2050) A(2070) A(2080) A(2080) A(2100) A(2100) A(2110) A(2325) A(2350) A(2585)	$3/2^+$ **** $1/2^-$ * $3/2^-$ * $5/2^-$ * $7/2^+$ ** $7/2^-$ **** $3/2^-$ * $9/2^+$ *** *	$ \begin{array}{l} \hline \equiv (1950) \\ \hline \equiv (2030) \\ \hline \equiv (2120) \\ \hline \equiv (2250) \\ \hline \equiv (2370) \\ \hline \equiv (2500) \\ \hline \Omega^{-} \\ \Omega(2012)^{-} \\ \Omega(2250)^{-} \\ \Omega(2380)^{-} \\ \Omega(2470)^{-} \end{array} $	$ \begin{array}{c} *** \\ ** \\ 2 \\ 5? \\ ** \\ ** \\ ** \\ ** \\ ** \\ ?^{-} \\ *** \\ ** \\ ** \\ ** \\ ** \\ ** \\ ** \\$	Ξ _{cc} * Ξ ⁺⁺ *	*	

Fundamental inputs to various systems

Precise understanding of low-energy hadron interactions Attraction or Repulsion? Strength? Bound state? Interdisciplinary importance

Hadron Interactions from Experiments

Scattering experiments

Phase shift

- Target particles must be stable
- Beam particles must fly ~cm

Hypernuclei, Exotic nuclei

Binding energy➢ Medium effects

Femtoscopy

Correlation function of hadron pairs in **high-energy nuclear collisions**

In principle, applicable to all identifiable hadrons

Low-energy hadron interactions from high-energy nuclear collisions!

NN, π N, K⁺N, K⁻N, Σ N, etc.

 Λ , Σ, Ξ, $\Lambda\Lambda$ hypernuclei, etc.

High-Energy Heavy-Ion Collisions

https://www.bnl.gov/newsroom/news.php?a=110303

riments/alice-images-gallery resources/image/expe

Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

un: 137171, 2010-11-09 00:12:13

ALICE

QGP in Small Systems?

In high-multiplicity pp & pA collisions

From experiments

- Hydro-like collectivity
- Thermal strangeness production

Hydrodynamics-based models based on the **core-corona** picture

EPOS4 K. Werner, PRC 108, 064903 (2023)
 DCCI2 Y. Kanakubo *et al.*, PRC 105, 024905 (2022)

Flow harmonics PHENIX, PRC 97, 064904 (2018)

High-Energy Nuclear Collisions as a "Tool"

AA collisions and high-multiplicity pp, pA collisions

A diverse "hadron factory"

Abundant hadrons are generated almost at the same time

Chaotic hadron emission

Statistical models can well describe hadron yield ratio

■ Various collision systems, huge statistics

Near 4π detector, precise pID, etc.

Excellent testing ground for hadron physics!

Contents

Introduction

- Basics of Femtoscopy
 Correlation Function
 - Koonin-Pratt Formula
 - Lednický-Lyuboshits Model

p ϕ Femtoscopy

Hadron Momentum Correlations

Typical behavior at low-q, (for non-identical pair) Attraction $\rightarrow C(q) > 1$ Repulsion $\rightarrow C(q) < 1$

Various Correlation Measurements

ALICE: CFs mostly in high-multiplicity pp collisions
 STAR: CFs in AA collisions

Also, many other collaborations...

Koonin-Pratt Formula S. E. Koonin, PLB 70, 43 (1977); S. Pratt, PRL 53, 1219 (1984)

12

AssumptionsChaotic source: Pairs are emitted independentlyIsolated system: Negligible effects of surrounding hadron gasSmoothness approximation(Equal time approximation)

$$C(q, P) = \frac{\int d^4 x_a d^4 x_b S_a(p_a; x_a) S_b(p_b; x_b) |\varphi(q; r)|^2}{\int d^4 x_a S_a(p_a; x_a) \int d^4 x_b S_b(p_b; x_b)}$$
Pair Rest Frame (P = 0)
Integrate out CM

$$C(q) = \int d^3 r S(q; r) |\varphi(q; r)|^2$$
CF $\langle \Box$ Source Func. & Relative WF

"Femtoscopy" (Femtometer + Spectroscopy)

Based on Koonin-Pratt formula

$$C(q) = \int d^3r \ S(q; r) \ |\varphi(q; r)|^2$$

$$CF \bigvee SF \& Relative WF$$

From measured CF, ■ Input: WF → Output: SF a.k.a. "HBT-GGLP Interferometry" ■ Input: SF → Output: Hadron interaction

HBT-GGLP Interferometry

Two-photon momentum correlation from Sirius R. Hanbury Brown and R. Q. Twiss, Nature **178**, 1046 (1956)

Two-pion momentum correlation in $p\overline{p}$ collision

G. Goldhaber, S. Goldhaber, W.-Y. Lee, and A. Pais, Phys. Rev. 120, 300 (1960)

$$P = p_a + p_b, \ q = \frac{1}{2}(p_a - p_b)$$
$$R = \frac{1}{2}(x_a + x_b), \ r = x_a - x_b$$
$$\Sigma: \text{Variance-covariance matrix}$$
$$\text{Size \& shape of SF}$$

SF: Assuming Gaussian one-particle **SF**

 $S_{i}(\boldsymbol{x}) \propto \exp\left(-\frac{1}{2}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\boldsymbol{x}\right) \Rightarrow S_{a}(\boldsymbol{x}_{a})S_{b}(\boldsymbol{x}_{b}) \propto \exp(-\boldsymbol{R}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\boldsymbol{R})\exp\left(-\frac{1}{4}\boldsymbol{r}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\boldsymbol{r}\right)$ WF: Neglecting interaction, Symmetrization $\Psi(\boldsymbol{p}_{a}, \boldsymbol{p}_{b}, \boldsymbol{x}_{a}, \boldsymbol{x}_{b}) \propto \frac{1}{\sqrt{2}}\left(e^{i\boldsymbol{p}_{a}\cdot\boldsymbol{x}_{a}+i\boldsymbol{p}_{b}\cdot\boldsymbol{x}_{b}}+e^{i\boldsymbol{p}_{a}\cdot\boldsymbol{x}_{b}+i\boldsymbol{p}_{b}\cdot\boldsymbol{x}_{a}}\right) = e^{i\boldsymbol{P}\cdot\boldsymbol{X}}\sqrt{2}\cos(\boldsymbol{q}\cdot\boldsymbol{r})$ CF: $C(\boldsymbol{q}) = \int d^{3}r \frac{1}{(4\pi)^{2/3}|\boldsymbol{\Sigma}|^{1/2}}\exp\left(-\frac{1}{4}\boldsymbol{r}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\boldsymbol{r}\right)\left|\sqrt{2}\cos(\boldsymbol{q}\cdot\boldsymbol{r})\right|^{2} = 1 + \exp(-4\boldsymbol{q}^{\mathsf{T}}\boldsymbol{\Sigma}\boldsymbol{q})$ Experimental CF = Weighted average of CFs in each ${}^{2S+1}L_I$ channel

$$|\varphi|^{2} = \sum_{\text{states}(S,L,J)} \omega_{(S,L,J)} |\varphi^{(S,L,J)}|^{2}$$
$$\omega_{(S,L,J)} = \frac{2S+1}{(2s_{a}+1)(2s_{b}+1)} \frac{2J+1}{(2L+1)(2S+1)}$$

Koonin-Pratt formula Spin-independent SF

Focusing on low-q regions under assumptions of chaotic source and isolated system \rightarrow Time-independent Schrödinger eq. with central force

<u>Partial-wave expansion</u> $\varphi(\boldsymbol{q};\boldsymbol{r}) = \sum_{l=0}^{\infty} (2l+1)i^{l}\varphi_{l}(\boldsymbol{q};\boldsymbol{r})P_{l}(\cos\theta)$

φ_l : Radial WF $P_l(\cos \theta)$: Legendre Polynomials

16

For each ^{2S+1}L_J channel,

$$\left[-\frac{\partial^2}{\partial r^2} - \frac{2}{r}\frac{\partial}{\partial r} + \frac{l(l+1)}{r^2} + 2\mu V(r)\right]\varphi_l(q;r) = q^2\varphi_l(q;r) \qquad \mu = \frac{m_a m_b}{m_a + m_b}$$

Rewriting Koonin-Pratt Formula

For non-identical pair w/o Coulomb interaction,

Cf. Generalization to higher partial waves in K. Murase and T. Hyodo, JSPC 3, 100017 (2025)

Interpretation of Correlation Function

$$C(q) = 1 + \int_{0}^{\infty} dr \quad \frac{4\pi r^{2}S(q;r)}{\underset{\text{with Jacobian}}{\text{SF}}} \frac{||\varphi_{0}(q;r)|^{2} - |j_{0}(qr)|^{2}|}{\underset{\text{Increase/Decrease in WF by FSI}}{\text{WF Change}}$$

18

Deviation of C(q) from 1 = How much SF "picks up" WF change

Lednický-Lyuboshits Model

R. Lednický and V. L. Lyuboshits, Yad. Fiz. 35, 1316 (1981)

$$C(q) = 1 + \int_0^\infty dr 4\pi r^2 S(q;r) [|\varphi_0(q;r)|^2 - |j_0(qr)|^2]$$

Assumptions Gaussian SF: $S(q;r) \approx S(r) \propto \exp\left(-\frac{r^2}{4r_0^2}\right)$ Asymptotic WF (+ effective range correction)

$$C(q) = 1 + \frac{|f_0(q)|^2}{2r_0^2} F_3\left(\frac{r_{\text{eff}}}{r_0}\right) + \frac{2\text{Re}f_0(q)}{\sqrt{\pi}r_0} F_1(2qr_0) - \frac{\text{Im}f_0(q)}{r_0} F_2(2qr_0)$$
$$f_0(q) = \frac{1}{q\cot\delta_0(q) - iq} \approx \frac{1}{-\frac{1}{a_0} + \frac{1}{2}r_{\text{eff}}q^2 - iq}, \quad F_1(x) = \frac{D_+(x)}{x} = \frac{e^{-x^2}}{x} \int_0^x dt \, e^{t^2}, \quad F_2(x) = \frac{1 - e^{-x^2}}{x}, \quad F_3(x) = 1 - \frac{x}{2\sqrt{\pi}}$$

CF becomes a function of a_0 , r_{eff} , and r_0

Cf. Generalization to higher partial waves in K. Murase and T. Hyodo, JSPC 3, 100017 (2025)

Hadron Interaction Study via Femtoscopy

Recent active studies have demonstrated its effectiveness and significance

L. Fabbietti et al., Ann. Rev. Nucl. Part. Sci. 71, 377 (2021)

→ Assuming static (*q*-independent) Gaussian SF

Actual SF should reflect the complex dynamics of nuclear collisions

A. Ohnishi, talk at RHIC-BES On-line seminar IV (2022)

For precision study of hadron interactions,

Femtoscopy using dynamical models

Contents

Introduction

- Basics of Femtoscopy
- **p** ϕ Femtoscopy
 - > Overview
 - Source Function from a Dynamical Model
 - Correlation Function

Experimental $p\phi$ CF ALICE, PRL 127, 172301 (2021) High-multiplicity (0–0.17%) p+p collisions at $\sqrt{s} = 13$ TeV

Lednický-Lyuboshits Fit Gaussian source size: r₀ = 1.08 fm ← Resonance Source Model ALICE, PLB 811, 135849 (2020) [Corrigendum: PLB 861, 139233 (2025)]

Scattering length: $a_0 \cong -0.85 - 0.16i$ fm Effective range: $r_{eff} \cong 7.85$ fm

Attractive pφ interaction as a spin-average
Small effects of channel-couplings in vacuum?

Existing $p\phi$ Femtoscopy 2

Spin-channel-by-channel femtoscopy E. Chizzali et al., PLB 848, 138358 (2023)

Gaussian source size: $r_0 = 1.08$ fm

⁴S_{3/2}: <u>HAL QCD potential</u> Y. Lyu *et al.*, PRD 106, 074507 (2022) $a_0^{(3/2)} \cong -1.43 \text{ fm}, r_{eff}^{(3/2)} \cong 2.36 \text{ fm}$ Overall attraction without bound states

 ²S_{1/2}: Parametrized potential ← Constrain by experimental CF a₀^(1/2) ≈ 1.54 - i0.00 fm, r_{eff}^(1/2) ≈ 0.39 + i0.00 fm
 Strong attraction
 Small effects of channel-couplings
 Indication of a pφ bound state

 $^{2}S_{1/2}$ Channel

Parametrized potential E. Chizzali *et al.*, PLB **848**, 138358 (2023) Channel-couplings are neglected for simplicity

$$V^{(1/2)}(r) = \frac{\beta \left[a_1 e^{-(r/b_1)^2} + a_2 e^{-(r/b_2)^2} \right]}{\text{Short-range interaction}} + \frac{a_3 m_{\pi}^4 f(r; b_3)}{\text{TPE}} \frac{e^{-2m_{\pi}r}}{r^2}$$

Only one
adjustable
parameter
$$\beta$$

default: $\beta = 7$

WF change: $|\varphi_0|^2 - |j_0|^2$ -500 -1000 (L) [WeV] -1500 -2000 -2500 pφ(²S_{1/2}) **Strong enhancement** 40 1.2 1.4 1.6 1.8 2 2.2 150 at small qr Chizzali2022 -3000 a₁ = -371 MeV, b₁ = 0.13 fm, a₂ = -119 MeV, 30 [MeV] $b_2 = 0.3$ fm, $a_3 = -1.62$ fm⁵, $b_3 = 0.63$ fm -3500 100 0.5 2.5 0 1.5 r [fm] 20 "Negative valley" $a_0 = 1.99 \text{ fm}$ 50 around a_0 10 $r_{\rm eff} = 0.46 \, {\rm fm}$ \leftarrow A node of φ_0 0 A bound state 2 8 10 r [fm]

Dynamical Model

Dynamical Core–Corona Initialization model (DCCI)

Y. Kanakubo, Y. Tachibana, and T. Hirano, PRC **105**, 024905 (2022)

A state-of-the-art dynamical model based on core–corona picture

<u>**Core</u>:</u> Equilibrated matter ~ QGP</u>**

Non-equilibrium partons

Describe the entire evolution of nuclear collision reactions

<u>PYTHIA8</u>

T. Sjöstrand *et al.*, Comput. Phys. Commun. **191**, 159 (2015) **pQCD + String Fragmentation**

<u>(3+1)-D hydro</u>

Y. Tachibana and T. Hirano, PRC **90**, 021902 (2014) Hydrodynamic eq. w/ source term

<u>iS3D</u>

M. McNelis *et al.*, Comput. Phys. Commun. **258**, 107604 (2021) **Grand canonical sampling of hadrons**

JAM

Y. Nara *et al.*, PRC **61**, 024901 (2000) Hadron transport based on QMD

MC event generator

Dynamical hadron emission reflecting whole collision reactions

Core-corona picture

Unified description from pp to AA collisions Applicable to high-multiplicity pp collisions

Soft from corona Y. Kanakubo *et al.*, PRC **106**, 054908 (2022) High experimental reproducibility of low- p_T hadron yields

SF that reflects "realistic" collision dynamics compared to static Gaussian SF

Source Function from Dynamical Models

SF = Phase space dist. of hadrons at their **"emission point"**

Isolated system after emission in Koonin-Pratt formula

Dist. at "final interacting point (FIP)" w/ surrounding hadron gas

SF from dynamical models at PRF

$$S(\boldsymbol{q};\boldsymbol{r}) = \frac{1}{N_{\text{pair}}(\boldsymbol{q})} \frac{d^3 N_{\text{pair}}(\boldsymbol{q})}{d^3 r}$$
q: Relative momentum **at FIP**
r: Relative coordinate **at FIP**
 $N_{\text{pair}}(\boldsymbol{q}) = d^3 N_{\text{pair}}/d^3 q$: Number of pairs w/ *q* **at FIP**

High-multiplicity 0-0.17% pp collisions at $\sqrt{s} = 13$ TeV <u>Plot</u>: **DCCI2 SF**, <u>Line</u>: Gaussian SF $S(r) \propto \exp(-r^2/4r_0^2)$ w/ $r_0 = 1.08$ fm

Note: Event-mixing to increase statistics

Non-Gaussian long-tail

Mainly due to proton rescatterings with surrounding pion gas a.k.a. "**Pion wind**"

Hadronic rescatterings even in pp collisions

Correlation Function

Effects of Decay and Rescattering

■ Distribution at hypersurface ~ Gaussian
 ■ Resonance decay → A little long-tail
 ■ Hadronic rescattering → Long-tail

Larger effects of hadronic rescattering than resonance decay on SF and CF

Effects of Collectivity

Close in position space SF generally depends on q due to e.g., collectivity Close in momentum space 200 DCCI2 SF p-**Ø**⊕**p**-Ø p+p √s = 13 TeV 2.5 High-mult. 0-0.17% **Plots:** w/o q^* - r^* corre. C^{tot} $0.7 < S_T < 1.0$ $C^{(1/2)}$ Emission time correction $C^{(3/2)}$ p: -0.8<n_<0.8 0.8 0.5<p_<4.05 GeV W/w/ q^* - r^* corre. C^{tot} [fm⁻¹] H------150 $\phi: -0.8 < \eta_p < 0.8$ C^(3/2) ⊢ *q*–*r* correlation $\mathcal{C}(q)$ q [MeV] 0.6 (q; r)100 **Bands:** 0.4 W/o 50 0.5 *q*–*r* correlation potential: Chizzali2022 0.2 $= -371 \text{ MeV}, a_2 = -119 \text{ MeV}, a_3 = -1.62 \text{ fm}^5$ = 0.13 fm, $b_2 = 0.3 \text{ fm}, b_3 = 0.63 \text{ fm}, \beta = 7$ S_{3/2} potential: HAL2022 371 MeV, a₂ = -119 MeV, a₃ = -1.62 fm⁵ .13 fm, b₂ = 0.3 fm, b₃ = 0.63 fm $\rho = 0.097 \pm 0.005$ 50 100 150 200 0 ច 0٦ 10^{-} q [MeV] *r* [fm] CF at small q is more sensitive to Slightly positive q-r correlation Significant small source at small q the WF in the scattering region

Effects of Dynamical Hadron Emission

Dynamical model \rightarrow Emission time difference: $S(q; r^0 \neq 0, r)$

Effects of Dynamical Hadron Emission

No statistically significant effect on the $p\phi$ CF in pp collisions

The negative valley moves towards the small r region

 $\beta = 6$

SF picks up strong positive region of WF

pφ femtoscopy using Source Function from a dynamical model (DCCI2)

Effects of Collision Dynamics

Small but statistically significant

- ✓ SF has non-Gaussian tail mainly due to hadronic rescatterings
- ✓ SF depends on relative momentum due to e.g., collectivity

Phenomenological Constraints on $p\phi$ Interaction

✓ Indication of a bound state in ${}^{2}S_{1/2}$ channel ($E_{B} \cong 10-70$ MeV) Slightly different but qualitatively consistent with that using Gaussian SF For Precision Interaction Study via Femtoscopy

One needs to understand the effects of

- **Collectivity**
- Feed-down and rescattering
- Kinematics
- Non-femtoscopic background

etc.

Importance of using Source Function that reflects collision dynamics

Backup

Source Size Estimation in ALICE

Resonance Source Model ALICE, PLB **811**, 135849 (2020) [Corrigendum: PLB **861**, 139233 (2025)] Source size estimation from pp and pA CF in high-mult. p+p collisions

Approximately common m_T -scaling Indication of common "core" source for all particles

HBT-GGLP Interferometry Using Lévy Source

T. Csorgo et al., EPJ C 36, 67 (2004)

Cf. Lévy walk of pion in HIC in D. Kincses et al., Commun. Phys. 8, 55 (2025)