Post-QM2022: Results from Beam Energy Scan (ビームエネルギー走査、渦等の実験結果)

Takafumi Niida (Univ. of Tsukuba)

第39回Heavy Ion Cafe & 第35回Heavy Ion Pub合同研究会「ポストQM2022」 @名古屋大学, 4/30/2024

Beam Energy Scan (BES)

- A smooth crossover near $\mu_B \sim 0$ ($\mu_B < 300$ MeV)
- Pseudo-critical temperature at $\mu_B = 0$: $T_{pc} = 156.5 \pm 1.5$ MeV

Y. Aoki et al., Nature 443, 675 (2006) A. Bazavov et al., PLB795 (2019) 15

Outline

- Particle production
- Fluctuations \bullet
- (a bit on) Femtoscopy ←maybe covered by 関口さん ●
- Vorticity and polarization
- (a bit on) Dilepton ← maybe covered by 八野さん

*Mostly based on STAR results but a few from other experiments *Sorry for a mixture of English and Japanese

Data taken by STAR BES-I&II + Fixed-Target program

Particle production at 3 GeV

Talks by H. Liu (STAR) and B. Kimelman (STAR)

3 GeVでは、バリオンストッピングにより、バリオンが支配的な領域。 それに伴い、軽い原子核やハイパー核などがより多く生成されるようになる。

Effect of Coulomb potential

バリオンストッピングにより、正味電荷は正となり、クーロン場が生成される。 クーロン場によって、正と負電荷粒子のスペクトルが変化する。

Strangeness production

Talks by A. Marcinek (NA61)

K+/pi+ "horn" was considered as a possible signature of phase transition. But with BES-I data, it is rather smooth transition with energy. No peak in smaller systems (Ar+Sc, Be+Be) by NA61/SHINE.

ということから7 GeV付近のピークは大体説明できる。

*バリオン密度が√s_{NN}~7 GeVで最大、K+と∧のassociate production (N+N->N+∧+K+)が支配的、

Baryon-to-meson ratio

The lower protection through the server of 3 GeV:

Fast increase with p_T at 3 GeV

Baryon-to-meson ratio

Enhancement at intermediate p_T at $\sqrt{s_{NN}} >= 19.6$ -> hadronization through quark coalescence

Talk by M. Puccio (ALICE)

ALICE, arXiv:2112.08156

Similar enhancement in charm sector -> charm recombination?

Different trend of kinetic freeze-out temperature (T_{kin}) and and radial flow velocity (β) at 3 GeV Deuteron fre (applicability of blast-wave model at this lower energy?) aller velocities compared to that of protons at $\sqrt{s_{NN}} = 3$ GeV 3 GeVにおけるT_{kin}は、7.7-200 GeVと比較して低い。

T_{kin}(d) > T_{kin}(p): pよりもdの方が早くfreeze-outする?

Probing hadronic-phase

report

pro

HIC.

the s

nser

of

avor

ion i

ance

Science Grid consortium for providing resources and sup-

C

we

Regeneration gain In summary, $\phi(1020)$ and Ξ ratios in Au+Au colli STAR experiment at I nificantly larger than Ronscattericanossa sions. Both the resu $\sim 4.2\,\mathrm{fm}$) ratio -reezeou for strangeness produ els, including the resor Chemical

 $au_{K^{*0}} \sim 4 \, \mathrm{fm/c}$

our measured ϕ/K_{-} tio at $3 = \sqrt{-a}$ and the increasing trend of ϕ/Ξ^{+} at lower energies. The new results from this paper 003 ange in the strangeness protine 10^{10} 10suggest a significant c / Inattesteev, pro ding new in Fights towards the standing of the QCD edium properties at high sity. $\tau_{\phi} \sim 45 \text{ fm/cv.}$ KNOWLEDG中心不可容におけるrescattering loss - LHCでは、regenerationの影響が大きい and/or hadronic phaseが長い Medium lifetime fruitful discussions. We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open

ision

CP search with fluctuations

Talk by T. Nonaka

Why do we want to study fluctuations of conserved charges?

- ullet

 $C_1 = \langle N \rangle, \ C_2 = \langle (\delta N)^2 \rangle \quad \delta N = N - \langle N \rangle$ $C_3 = \langle (\delta N)^3 \rangle \ C_4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$

- 体積効果をキャンセルするために、キ $C_6 = \langle (\delta N)^6 \rangle + 30 \langle (\delta N)^2 \rangle 15 \langle (\delta N)^2 \rangle \langle (\delta N)^2 \rangle$ net-baryonは測定できないので、net-p

$$C_{2} = \langle (\delta N)^{2} \rangle_{c} \approx \xi^{2}$$

 $C_{3} = \langle (\delta N)^{3} \rangle_{c} \approx \xi^{4.5}$
 $C_{4} = \langle (\delta N)^{4} \rangle_{c} \approx \xi^{7}$
 $\Delta = \langle (\delta N)^{4}$

Net-proton C₄/C₂

Talks by T. Nonaka, Yu Zhang (STAR)

HADESの2.4 GeV、STARの3 GeVのC₄/C₂は、 ゼロもしくは負の値になる

→ baryon conservation (UrQMD)で説明できる

CPから予測されるピーク構造は、3 GeV以上にありそう → BES-IIの高統計に期待

Crossover search

7r+7r and Ru+Ru collision results fit into the p+p \oplus Au+Au results at $\sqrt{s_{MN}} = 200$ GeV

deuteron-p

ws monotonic energy dependence in contrast to protons.

be affecting the event of B=2) fluctuations re investigation ongoing. Thèoretical inputs are also needed.

 p and d numbers are anti-correlated in both STAR BES and ALICE - Data favors coalescence with independent p and n fluctuations

Cumulant Ratios and p-d Correlation

Vorticity and polarization

(ΞやΩの偏極測定もされている)

Talk by J. Adams (STAR) Poster by K. Okubo (STAR)

More precise results from BES-II are coming

 $^{197}Au > {}^{96}_{44}Ru, {}^{96}_{40}Zr > {}^{63}Cu > {}^{16}O$

Local polarization in isobar collisions

Talk by J. Adams (STAR) Poster by T. Niida (STAR)

Flowによって、ビーム軸を回転軸とするような渦が生まれ、 それが偏極に繋がる。

- Au+Au 200 GeV同様、isobarでもv2-drivenな偏極を観測
- 2次同様、3次平面に対する依存性も観測!
 →v₃-drivenな渦&偏極を示唆
- shear termを入れることで"spin puzzle"は、一応解決しそう

vorticity:
$$\omega_{\rho\sigma} = \frac{1}{2} (\partial_{\sigma} u_{\rho} - \eta)$$

shear: $\Xi_{\rho\sigma} = \frac{1}{2} (\partial_{\sigma} u_{\rho} + \eta)$

B. Fu et al., PRL127, 142301 (2021)
F. Becattini et al., PRL127, 272302 (2021)
S. Alzharani et al., arXiv:2203.15718

Local polarization in isobar collisions

sin[n(ϕ - Ψ_n)]) [%] Isobar $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ STAR preliminary Ru+Ru&Zr+Zr, $\Lambda + \overline{\Lambda}$ ★ n=2 0.5 \vec{U}_{ν} ♦ n=3 $0.5 < p_{-} < 6 \text{ GeV}/c, |y| < 1 \alpha_{\Lambda} = -\alpha_{-} = 0.732 \pm 0.014$ 20 40 80 60 Centrality [%] $sin[2(\phi-\Psi_2)]$ [%] Isobar $\sqrt{s_{NN}} = 200 \text{ GeV}$ STAR preliminary ★ Ru+Ru&Zr+Zr, Λ + $\overline{\Lambda}$ • Au+Au 200 GeV, $\Lambda + \overline{\Lambda}$ 0.5 + Pb+Pb 5.02 TeV, $\Lambda + \overline{\Lambda}$ \overrightarrow{P}_{z} (ALICE) T $0.5 < p_{\tau} < 6 \text{ GeV}/c, |y| < 1 \alpha_{\Lambda} = -\alpha_{\pi} = 0.732 \pm 0.014$ 20 40 80 60 Centrality [%]

- Shearを

Posters by T. Niida (STAR), S. Ryu Talk by B. Fu

 $f_n = \langle P_z \sin[n(\phi - \Psi_n)] \rangle = \frac{\int p_T dp_T d\phi dy \int p \cdot d\sigma \,\mathcal{A}^{\mu}(x, p) \sin[n(\phi - \Psi_n)]}{\int p_T dp_T d\phi dy \, 2m \int p \cdot d\sigma \, f(x, p)}$

- 理想流体ではPzがゼロになるという点で、addional constraint on ŋ/s

Medium temperature with dileptons

LMR (low mass region): $M_{ee} < M_{\Phi}$ IMR (intermediate mass region): $M_{\Phi} < M_{ee} < M_{J/\Psi}$

Talk by Z. Ye (STAR)

"invariant" mass分布のfitから、 radial flowによるblue-shit freeな温度測定 $dR_{ll}/dM \propto (MT)^{3/2} \exp(-M/T) ,$

Rapp and Hess, PLB753(2016)586

IMR is dominated by QGP thermal radiation

Medium temperature with dileptons

Excess dilepton mass spectra from STAR BES, comparing to NA60 dimuon result

Talk by Z. Ye (STAR)

"invariant" mass分布のfitから、 radial flowによるblue-shit freeな温度測定

 $dR_{ll}/dM \propto (MT)^{3/2} \exp(-M/T)$,

e

SPSよりもRHICの方がmediumの温度が高い

(27-54GeVにしては)高すぎるかもしれない (ただし誤差も大きい)

Summary

- Search for CP/crossover/1st-order phase transition is ongoing
 - No conclusive result/signature so far (in my opinion)
- New results at lower energies (~3 GeV) where baryon-rich medium is created lacksquare
- Data taking of BES-II just completed, so more interesting results will come soon.

Backup

T

